
Particle Precipitation in Planetary Atmospheres

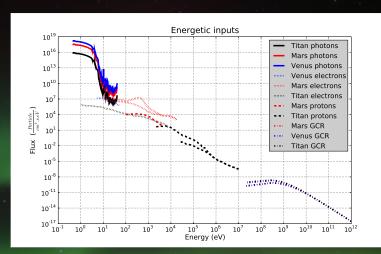
Guillaume Gronoff^{1,2}

1) NASA LaRC, Hampton Va, USA 2) SSAI, Hampton Va, USA Guillaume.P.Gronoff@nasa.gov

Aurora

Aurora

Introduction: energetic particles and atmospheres


Particle effects on the planetary atmospheres

- Ionization
- Excitation
- Heating
- Airglow (aurora)

Interest of these studies

- Remote sensing of atmospheric variations
- Study of the history of the atmosphere
- Space weather

Introduction: Energetic inputs in atmospheres

The photoionization-photoexcitation model and its limitations

Equation solved

 P_a^{phot} is the photoproduction of the specie a (ion or excited specie). Ionization (or excitation):

$$P_{a}^{k}(\lambda, z) = n_{k}(z)\sigma_{a}^{k}(\lambda)I(\lambda, z)$$

$$P_{a}(z)^{phot} = \sum_{k} \int_{0}^{\infty} P_{a}^{k}(\lambda, z)d\lambda$$

Integration of the Beer-Lambert law for the 1D code, over the k neutral species:

$$I(\lambda, z) = I_{\infty}(\lambda)e^{-\tau}$$

$$\tau = \sum_{k} \sigma^{k}(\lambda) \int_{z}^{\infty} n_{k}(z') ch\chi(z') dz'$$

The electron-impact model and its limitations

Equation solved

Boltzmann equation with particle creation and non-conservative force:

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \vec{v} \frac{\partial f}{\partial \vec{x}} + \frac{\partial \vec{F}f}{\partial \vec{p}} = \frac{\delta f}{\delta t} \Big|_{Coll} + Q(\vec{x}, \vec{p}, t)$$

Coulombian force (suprathermal electrons interaction with the thermalized electrons):

$$\vec{F} = -n_e L(E) \frac{\vec{v}}{v}$$

The coulombian force is non-conservative.

The electron-impact model and its limitations

Equation solved

Stationary electron flux (Φ) equation:

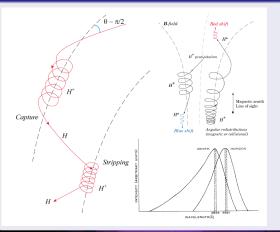
$$\mu \frac{\partial \Phi}{\partial z} - n \frac{\partial}{\partial E} (L(E)\Phi) = -\sum_{k} n_{k}(z) \sigma^{k}(E)\Phi + source$$

$$source = electron \ creation + redistribution$$

Production equation:

$$P_a^{elec}(z) = \sum_k n_k(z) 2\pi \int_{-1}^1 \int_E^{\infty} \sigma_a^k(E') \Phi(z, E', \mu) dE' d\mu'$$

The electron-impact model and its limitations


The redistribution function

$$redistribution(z, E, \mu) = \int_{E}^{\infty} \int_{-1}^{1} \operatorname{Redi} \ d\mu' dE'$$
 (1)

$$\mathrm{Redi} \quad = \quad R'((E', \mu') \to (E, \mu)) \Phi(z, E', \mu') \quad \ (2)$$

- Angle redistribution
 - Porter parameter for elastic collisions
 - Isotropic for created electron
 - Forward approximation for inelastic (including ionization) collisions
- Energy redistribution
 - At Auger energy for Auger electrons
 - Opal parameter to compute doubly differential cross sections
 - · Conservation of energy for the energy loss during inelastic impact
 - L(E) losses, energy conservation through heating

The coupled H+/H transport principle (C. Simon thesis 2006)

The coupled H+/H transport equation

Example for protons:

$$\mu \frac{\partial \Phi_{P}(s,E,\mu)}{\partial s} - \frac{1-\mu^{2}}{2B} \frac{dB}{ds} \frac{\partial \Phi_{P}(s,E,\mu)}{\partial \mu} - \sum_{k} n_{k}(s) \sum_{\alpha} \int d\mu' \frac{\partial}{\partial E} \left(L_{k,P}^{\alpha}(E,\mu' \to \mu) \Phi_{P}(s,E,\mu') \right) (3)$$

$$-\sum_{k} n_{k}(s) \int d\mu' \frac{\partial}{\partial E} \left(L_{k}^{01}(E, \mu' \to \mu) \Phi_{H}(s, E, \mu') \right) = -\sum_{k} n_{k}(s) \sigma_{k, P}^{T}(E) \Phi_{P}(s, E, \mu)$$
 (4)

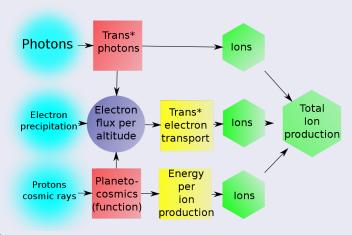
$$+\sum_{k} n_{k}(s) \sum_{\alpha} \int d\mu' \xi_{k,P}^{\alpha}(E,\mu \to \mu) \sigma_{k,P}^{\alpha}(E) \Phi_{P}(s,E,\mu')$$
 (5)

$$+\sum_{k} n_{k}(s) \int d\mu' \, \xi_{k}^{01}(E, \mu' \to \mu) \sigma_{k}^{01}(E) \Phi_{H}(s, E, \mu') \tag{6}$$

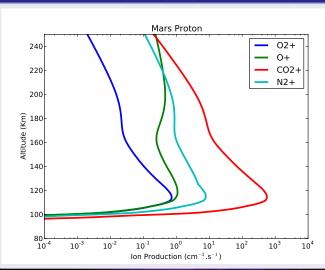
For hydrogen fluxes Φ_H , mirror equation save the magnetic term! Luckily, analytical solution of the form:

$$\Phi \propto e^{\mathcal{A}} \tag{7}$$

thanks to the nature of the matrix to solve: sparse matrix, exponential of a sparse matrix! (Galand et al. 1997,1998, Sidje, 1998).

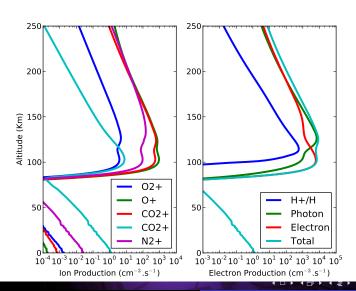

The coupled H+/H transport equation

- The proton and hydrogen equations are symmetrical
- Losses include ionizations
- Electrons, from ionizations, are called proto-electrons
- The proto-electrons can have enough energy to ionize/excite

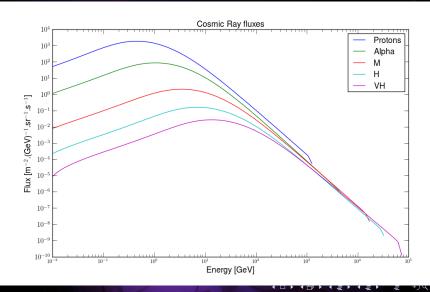

$$P_k(z) = 2\pi n_k(s) \sum_{j=H^+,H} \int d\mu \int \sigma_{ion}^{k,j}(E) \Phi_j(z,E,\mu) dE$$
 (3)

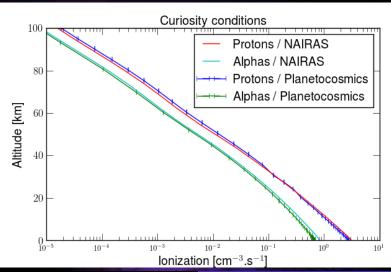
 Therefore, they are included in the Aeroplanet/electron transport system.

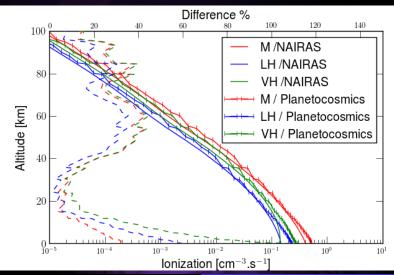
The coupled H+/H transport equation

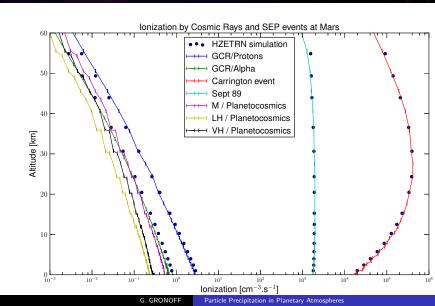


The effect of a 1 keV proton precipitation: the ion production




Computation of the ionization in the whole atmosphere


The cosmic ray spectra (Detail)


The cosmic ray ionization (comparison between NAIRAS and PLANETOCOSMICS)

The cosmic ray ionization (comparison between NAIRAS and PLANETOCOSMICS)

Solar energetic particle events

APPLICATIONS: computing the irradiation of astronauts/high latitude flights

The dose suffered by astronauts

SEP events

SEP event	Planetocosmics	HZETRN
Sept 89	69.0 mGy/day	65.0 mGy/day
Carrington	755 mGy/day	502 mGy/day
Oct 22	10.4 mGy/day	9.40 mGy/day
Oct 24	20.1 mGy/day	17.5 mGy/day
SPENVIS Oct 89 5min	147 mGy/day	124 mGy/day

Galactic Cosmic Rays

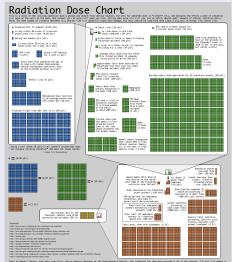
GCR family	Planetocosmics computation	HZETRN
Proton	0.11 mGy/day	0.107 mGy/day
Alpha	0.023 mGy/day	0.0295 mGy/day
M	0.017 mGy/day	0.0143 mGy/day
LH	0.008 mGy/day	0.00511 mGy/day
VH	0.009 mGy/day	0.00481 mGy/day
Total	0.1670 mGy/day	0.1607 mGy/day

Let's be careful about the units/doses/risks

Radiation dose

- 1 Gy = 1 J/kg
- 1 Sv = 1 Gy * QF (Quality factor)
- ullet QF = 1 for protons, electrons, photons
- QF = 20 for alpha particles
- QF = 10 for neutrons

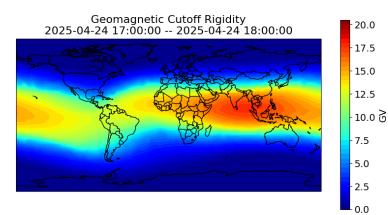
Let's be careful about the units/doses/risks

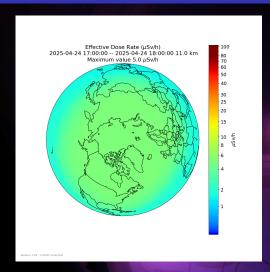

But those units are already simplified

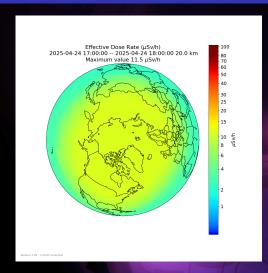
- Absorbed Dose in tissue, water, Si, are all in Gy; but different
- The Sievert is used for equivalent dose, ambient dose equivalent, effective dose...
- The Sievert is what affects the **risk** of cancer, the biology!
- At same energy*, a neutron is more damaging than a proton

(See Mertens et al 2016: Space Weather. 2016 November ; 14(11): 921–934. doi:10.1002/2016SW001399. Overview of the Radiation Dosimetry Experiment (RaD-X) flight mission) (* in our range of energies, let's not be pedantic)

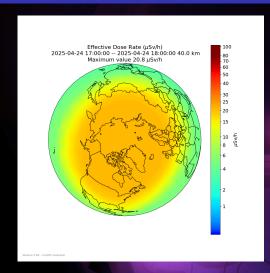
Let's be careful about the units/doses/risks

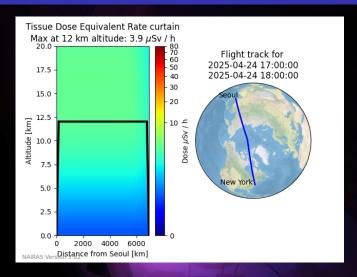

Radiation doses (and risks from XKCD / public domain)


Tools used by our team


- The NAIRAS(Nowcast of Aerospace Ionizing RAdiation system) model (Mertens et al. 2013) for fast computation of GCR and SEP events.
- The PLANETOCOSMICS model (Desorgher et al.) for accurate computation of GCR and SEP events.
- The AEROPLANETS model (Gronoff et al.) for fast and accurate computation of low energy events (photons, electrons (keVs), protons (up to MeV)).

Comparison of the NAIRAS and PLANETOCOSMICS models: the NAIRAS model is fast, but has approximations on the physics, whereas PLANETOCOSMICS is more accurate, but much slower (Monte-Carlo model)




Version 3.82 - Cutoff corrected

NAIRAS at CCMC

- This is the "realtime" version
- Time in UTC, about 2h from "actual" time
- (1h for satellite data to come, 1h to process)
- Prediction is under development (ROSES-Heliophysics-O2R)
- Also used for the ISS and space flight (GCR/SEP/radiation belts)

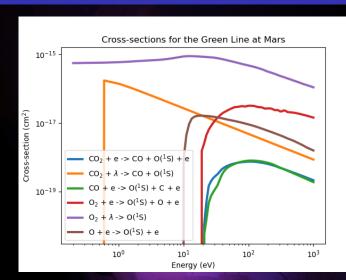
APPLICATIONS: the color of the aurora

The color of the aurora

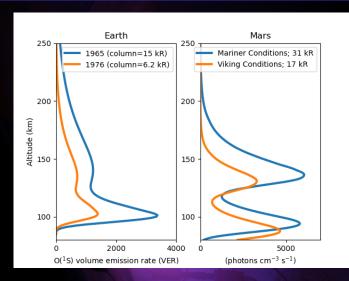
The color of the aurora

- The color of the aurora is due to the different ionization/excitation processes
- The main colors are:
 - Green: O(1D) at 557.7 nm
 - Red: O(1S) at 630.0 nm
 - Blue: N2+ at 427.8 nm
 - Violet: N2+ at 391.4 nm (careful about purple)
 - Rose: N2 (bands)

The sunlit aurora (Image: Emmanuel Beaudouin)


The sunlit aurora (Image: Emmanuel Beaudouin)

The sunlit aurora


- The sunlit aurora is due to the scattering of the sunlight by N2+ (from the aurora)
- Contrarily to usual aurora, the top is blue; while it is usually red (and the bottom is green, or blue/rose/violet if very intense)

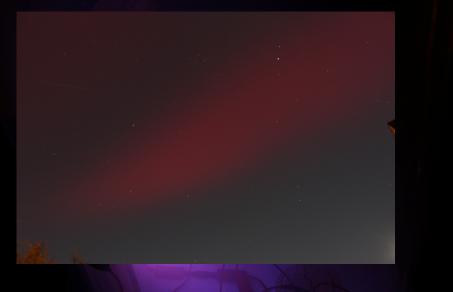
Computing the aurora on other planets

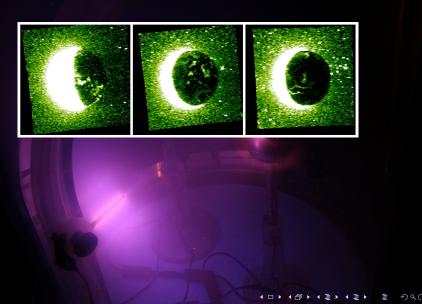
Computing the aurora on other planets

Computing the aurora on other planets

The aurora

- The aurora is due to the precipitation of electrons and protons
- The aurora is a good indicator of the magnetosphere
- The aurora is a good indicator of the solar wind
- The aurora is a good indicator of the atmosphere
- There is also some chemistry involved
- https://authors.elsevier.com/a/1kvfg_6DS4Vu5C





Thank you

for your attention